ARES Engine Competitive Market Assessment

ARES Peer Review April 23, 2002

Joel Bluestein
Energy and Environmental Analysis, Inc.

Overview

- Evaluate the commercial attractiveness of the ARES technologies compared to current and future competing DG technologies.
- Evaluation of actual future market potential to follow as second task.

ARES 2010 Performance Goals

- 500 to 6,500 kW
- 45% (2005) to 50% (2010) electrical efficiency
- $0.1 \text{ g/bhp-hr NO}_x (0.3 \text{ lb NO}_x/\text{MWh})$
- 10% reduction in cost of power
- Improved reliability, availability, maintainability.

Competing DER Technologies

- Conventional Engines
- Small Turbines
- Microturbines
- Fuel Cells
- Solar
- Wind

Market Issues - Now and Future

- Output capacity
- Physical size
- Capital cost
- Cost of electricity
- Operating cost
- Emissions

- CHP potential
- Lifetime
- Durability
- Serviceability
- Consumer acceptance

Applications

- Base load with or without CHP
- Peak shaving
- Power quality/reliability
- Emergency standby

Technology/Applicability Matrix

	Baseload	Peaking	Emergency	CHP	Quality/Reliability
ARES	Y	Y	L	Y	Y
Gas Engines	Y	Y	L	Y	Y
Diesel Engines	Y	Y	Y	Y	Y
Small Turbines	Y	Y		Y	Y
Microturbines	Y	Y		Y	Y
Fuel Cells	Y			Y	Y
PV	L	L			L
Wind	L	L			L

Y=Yes, L=Limited

Technology Output Range

End-Use Electric Load Range

Energy and Environmental Analysis, Inc.

Data Source: EIA

Application vs DG Technology

Technology Efficiency Comparison

Energy and Environmental Analysis, Inc

NO_x Emissions Comparison (Baseload)

Inc.

Installed Cost Comparison

Energy and Environmental Analysis, Inc.

Operating Cost Comparison

Cost of Electricity Comparison

EIA National Fuel Price Data

Energy and Environmental Analysis, Inc

CHP Characteristics

Physical Size - 500 kW Generator

Energy and Environmental Analysis, Inc.

Service Requirement Expectation

(Mature Baseload Technologies)

	Periodic Maintenance	Major Overhaul
	(hours)	(hours)
ARES	1,000 - 4,000	15,000 - 40,000
Conventional Gas Engine	1,000 - 4,000	25,000 - 40,000
Small Turbine	4,000	25,000 - 50,000
Microturbine	5,000	20,000 - 40,000
Fuel Cell	Yearly	40,000
		(stack replacement)
PV	Bi-yearly	20-30 years (lifetime)
Wind	Bi-yearly	20 years (lifetime)

Service Support Network History

Service Support

- Engines are most familiar technology to a broad range of customer service personnel.
- Extensive support base in place for engines. For ARES participants:
 - Over 2,800 U.S. locations to purchase product or parts
 - − 6,000+ U.S. service locations

ARES Summary

- Size range is larger than other advanced technologies.
- Efficiency is among the highest.
- Capital cost is among the lowest.
- Extremely compact.
- Builds on long-term product experience and extensive support infrastructure.

Conclusions

- ARES technology will be competitive with other advanced technologies in its application size range.
- High efficiency, compact size, familiarity and user support will all contribute to ARES success.